National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Silicon substituted calcium phosphate based bioceramic scaffolds
Karkuszová, Karina ; Šťastná, Eva (referee) ; Novotná, Lenka (advisor)
The theoretical part of this bachelor thesis summarizes the current state of knowledge of bioceramic materials based on calcium, phosphorus and silicon. More specifically, it focuses on calcium phosphates, the demands placed on them, the porosity of 3D foams, and biological properties such as biodegradation and bioactivity. 3D bioceramic calcium phosphate foam doped with silicon appears to be a suitable material for use in biomedical applications. It is the silicon that plays a role in the development of healthy bone and the formation of new tissue. Silicon substitutions are important in the field of investigation because they improve the bioassay of phosphate calcium. In the experimental part, calcium phosphate powders were first prepared by the hydroxyapatite and silica fusion reaction. Selected powder contents were 0; 0.1; 1, 2.5, 5, 10 and 20 wt.% SiO2. The samples were sintered at 1100 °C, 1200 °C and 1300 °C. The second part consisted in the preparation of 3D foams by direct penetration with polyurethane and the subsequent characteristics of phase composition, solubility and bioactivity. Bioceramic foams had a highly porous structure. For 42 days, sample behavior in Tris-HCl and simulated body fluid (SBF) was monitored. The results of the experiment have shown that the samples are bioactive and silicon substitution increases phosphate calcium solubility. Therefore, these materials are potentially useful for biomedical applications
Manufacturing of calcium phosphates and silica based scaffolds for bioapllications
Virágová, Eliška ; Hadraba, Hynek (referee) ; Částková, Klára (advisor)
The aim of this diploma thesis was to prepare porous bioceramic scaffolds based on calcium phosphates and calcium phosphates doped with silica. Scaffolds are intended to be used in bone tissue engineering. Two main preparation methods were used for the creation of scaffolds – replica method and direct foaming method. Theoretical part of the diploma thesis is focused on a general description of the skeletal system, biomaterials and methods of preparation of highly porous calcium phosphate ceramics. Experimental part contains a description and the results of prepared scaffolds by above mentioned methods. The preparation process by the direct foaming method was optimized to obtain a defined structure. Calcium phosphate scaffolds containing 0–20 wt.% SiO2 were sintered and studied in terms of material characteristics (phase composition, pore size and porosity, microstructural study by scanning electron microscopy (SEM)), bioactive properties (simulated body fluid (SBF) interaction tests and tests of simulated degradation) and mechanical properties in order to evaluate the effect of silica doping. Scaffolds prepared by both methods were composed of a mixture of hydroxyapatite and/or tricalcium phosphate and cristobalite and wollastonite with comparable porosity in the range of 80–88 %. The pore size of the scaffolds prepared by the direct foaming method reached the interval of 5–250 µm opposite to template method reached the pore size up to 430 µm. The SBF interaction tests and tests of the simulated degradation confirmed the bioactive behavior of the prepared scaffolds and their ability to degrade under the simulated conditions. The scaffolds prepared by the direct foaming method showed better mechanical properties (compressive strength up to 1,8 MPa) than the scaffolds prepared by the template method. The results showed that the prepared scaffolds are suitable and promising for potential applications in bone tissue engineering.
Bioceramic Materials for Advanced Medical Applications
Novotná, Lenka ; Lapčík,, Lubomír (referee) ; Drdlíková, Katarina (referee) ; Cihlář, Jaroslav (advisor)
Cílem disertační práce bylo připravit trojrozměrné biokeramické podpůrné systémy („skafoldy“), které by v budoucnu mohly pomoci při rekonstrukci a regeneraci poškozených kostních tkání. Porézní keramické pěny byly připraveny dvěma způsoby – replikační technikou a polymerizací in situ. Co se složení týče, byly studovány keramické materiály zejména na bázi oxidu hlinitého, zirkoničitého a kalcium fosfátů. Byl studován jednak vliv procesních parametrů jako je složení suspenzí a jejich viskozit, dále pak vliv tepelného zpracování na strukturu a výsledné vlastnosti připravených materiálů. U slinutých pěn byla pomocí rastrovací elektronové mikroskopie hodnocena zejména morfologie – velikost pórů, jejich propojenost a celková porozita, charakterizace mikrostruktury nebyla opomenuta. Dále bylo stanoveno fázové složení a pevnost v tlaku. Z biologických vlastností byla testována a diskutována bioaktivita a cytotoxicita materiálů. Disertační práce je členěna do několika částí. V literární rešerši je popsána stavba a vlastnosti kosti, požadavky kladené na kostní náhrady, výhody a nevýhody současně používaných materiálů a způsoby přípravy keramických pěn. Následuje experimentální část, kde byly nejprve studovány pěny připravené replikační technikou. Všechny takto vyrobené pěny měly propojené póry o velikostech 300 až 2000 m, celková porozita se pohybovala v rozmezí 50 – 99 %. Pevnost pěn na bázi kalcium fosfátů – 0,3 MPa (při celkové porozitě 80%) byla nedostatečná pro kostní náhrady, kde je požadována pevnost větší než 2 MPa. Kalcium fosfátové keramiky byly tedy zpevněny buďto inertním jádrem na bázi oxidu hlinitého nebo ATZ (oxidem zirkoničitým zhouževnatělým oxidem hlinitým). Dále byl přípraven částicový kompozit, ve kterým byl hydroxyapatit pojený oxidem křemičitým. Pevnost pěn se podařilo zvýšit až na více než 20 MPa. V poslední kapitole experimentální části byly studovány keramické pěny pěněné in situ, kde byly póry vytvářeny oxidem uhličitým unikajícím během reakce mezi diisokyanátem a polyalkoholem. Po vypálení polymerního pojiva měly pěny propojené póry o průměrné velikosti 80 až 550 m. Celková porozita se pohybovala v rozmezí 76 – 99%. Výhodou oproti replikační technice byly plné trámečky bez velké středové dutiny vznikající vypálením polymerní předlohy. Žádný ze studovaných materiálů nebyl pro buňky toxický, navíc všechny studované pěny vykazovaly bioaktivní chování. Z hlediska kostního tkáňového inženýrství se jako nejslibnější jeví kompozitní materiál zpevněný oxidem křemičitým.
Processing and properties of porous bioceramic materials
David, Jakub ; Ručková, Jana (referee) ; Novotná, Lenka (advisor)
Bachelor thesis is focused on the study of bioceramic porous materials. The theoretical part is divided into three parts. The first part describes biomaterials, their division and use in bone tissue engineering. The second part deals with the requirements of bioceramic support systems (scaffolds). The third section describes methods for the porous structures production. The effort of the practical part was to prepare by method of direct foaming bioceramic porous materials based on calcium phosphate. It studied mainly the affect of the suspension composition on the final properties of the synthesized material. Morphology of materials was also evaluated using scanning electron microscopy. Degradability of materials in simulated body fluid was tested in terms of biological properties.
Manufacturing of calcium phosphates and silica based scaffolds for bioapllications
Virágová, Eliška ; Hadraba, Hynek (referee) ; Částková, Klára (advisor)
The aim of this diploma thesis was to prepare porous bioceramic scaffolds based on calcium phosphates and calcium phosphates doped with silica. Scaffolds are intended to be used in bone tissue engineering. Two main preparation methods were used for the creation of scaffolds – replica method and direct foaming method. Theoretical part of the diploma thesis is focused on a general description of the skeletal system, biomaterials and methods of preparation of highly porous calcium phosphate ceramics. Experimental part contains a description and the results of prepared scaffolds by above mentioned methods. The preparation process by the direct foaming method was optimized to obtain a defined structure. Calcium phosphate scaffolds containing 0–20 wt.% SiO2 were sintered and studied in terms of material characteristics (phase composition, pore size and porosity, microstructural study by scanning electron microscopy (SEM)), bioactive properties (simulated body fluid (SBF) interaction tests and tests of simulated degradation) and mechanical properties in order to evaluate the effect of silica doping. Scaffolds prepared by both methods were composed of a mixture of hydroxyapatite and/or tricalcium phosphate and cristobalite and wollastonite with comparable porosity in the range of 80–88 %. The pore size of the scaffolds prepared by the direct foaming method reached the interval of 5–250 µm opposite to template method reached the pore size up to 430 µm. The SBF interaction tests and tests of the simulated degradation confirmed the bioactive behavior of the prepared scaffolds and their ability to degrade under the simulated conditions. The scaffolds prepared by the direct foaming method showed better mechanical properties (compressive strength up to 1,8 MPa) than the scaffolds prepared by the template method. The results showed that the prepared scaffolds are suitable and promising for potential applications in bone tissue engineering.
Silicon substituted calcium phosphate based bioceramic scaffolds
Karkuszová, Karina ; Šťastná, Eva (referee) ; Novotná, Lenka (advisor)
The theoretical part of this bachelor thesis summarizes the current state of knowledge of bioceramic materials based on calcium, phosphorus and silicon. More specifically, it focuses on calcium phosphates, the demands placed on them, the porosity of 3D foams, and biological properties such as biodegradation and bioactivity. 3D bioceramic calcium phosphate foam doped with silicon appears to be a suitable material for use in biomedical applications. It is the silicon that plays a role in the development of healthy bone and the formation of new tissue. Silicon substitutions are important in the field of investigation because they improve the bioassay of phosphate calcium. In the experimental part, calcium phosphate powders were first prepared by the hydroxyapatite and silica fusion reaction. Selected powder contents were 0; 0.1; 1, 2.5, 5, 10 and 20 wt.% SiO2. The samples were sintered at 1100 °C, 1200 °C and 1300 °C. The second part consisted in the preparation of 3D foams by direct penetration with polyurethane and the subsequent characteristics of phase composition, solubility and bioactivity. Bioceramic foams had a highly porous structure. For 42 days, sample behavior in Tris-HCl and simulated body fluid (SBF) was monitored. The results of the experiment have shown that the samples are bioactive and silicon substitution increases phosphate calcium solubility. Therefore, these materials are potentially useful for biomedical applications
Processing and properties of porous bioceramic materials
David, Jakub ; Ručková, Jana (referee) ; Novotná, Lenka (advisor)
Bachelor thesis is focused on the study of bioceramic porous materials. The theoretical part is divided into three parts. The first part describes biomaterials, their division and use in bone tissue engineering. The second part deals with the requirements of bioceramic support systems (scaffolds). The third section describes methods for the porous structures production. The effort of the practical part was to prepare by method of direct foaming bioceramic porous materials based on calcium phosphate. It studied mainly the affect of the suspension composition on the final properties of the synthesized material. Morphology of materials was also evaluated using scanning electron microscopy. Degradability of materials in simulated body fluid was tested in terms of biological properties.
Bioceramic Materials for Advanced Medical Applications
Novotná, Lenka ; Lapčík,, Lubomír (referee) ; Drdlíková, Katarina (referee) ; Cihlář, Jaroslav (advisor)
Cílem disertační práce bylo připravit trojrozměrné biokeramické podpůrné systémy („skafoldy“), které by v budoucnu mohly pomoci při rekonstrukci a regeneraci poškozených kostních tkání. Porézní keramické pěny byly připraveny dvěma způsoby – replikační technikou a polymerizací in situ. Co se složení týče, byly studovány keramické materiály zejména na bázi oxidu hlinitého, zirkoničitého a kalcium fosfátů. Byl studován jednak vliv procesních parametrů jako je složení suspenzí a jejich viskozit, dále pak vliv tepelného zpracování na strukturu a výsledné vlastnosti připravených materiálů. U slinutých pěn byla pomocí rastrovací elektronové mikroskopie hodnocena zejména morfologie – velikost pórů, jejich propojenost a celková porozita, charakterizace mikrostruktury nebyla opomenuta. Dále bylo stanoveno fázové složení a pevnost v tlaku. Z biologických vlastností byla testována a diskutována bioaktivita a cytotoxicita materiálů. Disertační práce je členěna do několika částí. V literární rešerši je popsána stavba a vlastnosti kosti, požadavky kladené na kostní náhrady, výhody a nevýhody současně používaných materiálů a způsoby přípravy keramických pěn. Následuje experimentální část, kde byly nejprve studovány pěny připravené replikační technikou. Všechny takto vyrobené pěny měly propojené póry o velikostech 300 až 2000 m, celková porozita se pohybovala v rozmezí 50 – 99 %. Pevnost pěn na bázi kalcium fosfátů – 0,3 MPa (při celkové porozitě 80%) byla nedostatečná pro kostní náhrady, kde je požadována pevnost větší než 2 MPa. Kalcium fosfátové keramiky byly tedy zpevněny buďto inertním jádrem na bázi oxidu hlinitého nebo ATZ (oxidem zirkoničitým zhouževnatělým oxidem hlinitým). Dále byl přípraven částicový kompozit, ve kterým byl hydroxyapatit pojený oxidem křemičitým. Pevnost pěn se podařilo zvýšit až na více než 20 MPa. V poslední kapitole experimentální části byly studovány keramické pěny pěněné in situ, kde byly póry vytvářeny oxidem uhličitým unikajícím během reakce mezi diisokyanátem a polyalkoholem. Po vypálení polymerního pojiva měly pěny propojené póry o průměrné velikosti 80 až 550 m. Celková porozita se pohybovala v rozmezí 76 – 99%. Výhodou oproti replikační technice byly plné trámečky bez velké středové dutiny vznikající vypálením polymerní předlohy. Žádný ze studovaných materiálů nebyl pro buňky toxický, navíc všechny studované pěny vykazovaly bioaktivní chování. Z hlediska kostního tkáňového inženýrství se jako nejslibnější jeví kompozitní materiál zpevněný oxidem křemičitým.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.